Revising the Planck Unit Values and Determining the Gravitational Constant As the alternative numerical expression, symbol use, and unit labels facilitate greater information density in maps, increased search and sort capability in digitized literature, and superior value comparison in tables, Geometrical Dimensional Analysis exposes a key similarity of values. With the structuring of definitions and formulas of fundamental constants into the lattices of logic, the vector spaces, the factoring pathway maps projected by acceptance of the International System of Units (S.I.), identities and patterns of relationship are displayed which correct the estimates of the Planck units and indicate a specific value for the constant of gravitation. Proposing that [G] has numerical value 6.6917625079...e-11 , exactly the same as other quantities with different units, the implication is that the difficulties in relating gravity to other forces and the gravitational to other constants has involved an inadequacy in the definition or use of the quantity calculus. With the atomic units of mass, length, and frequency as the unit vectors defining the Corrsin diagrams(006) of GJN017 and GJN018, both known and unsuspected factoring combinations within the atomic units become visible, validating the premise that unit systems can be treated as vector spaces(027) and inviting a similar display of the Planck units, as in diagram GJN020. As an overlay of the two natural unit systems, each of GJN023 and GJN024 is, at any point, a dimensionless ratio of a Planck unit numerator to an atomic unit denominator, relating together all of the quantities portrayed in the two individual unit system maps. For better understanding of that metaratio, however, [hB], [c], and [G] as unit vectors form yet another view of the Planck unit system in GJN016, where it is more obvious which quantities, lying in the plane created by adopted [hB] and defined [c], cannot be changed, and which entities, not in that plane, will be altered with the adjustments required to [PM], [PL], and [Pf]: just as the product [PL][Pf] must match [v0][aa] as equal to [c] and both [c][PL][PM] and {[PL]^2}[PM][Pf] must equal [hB], [PL][PM] must be as equal to [hB]/[c] as is [Me][a0][aa], [PM]/[Pf] must match both [Me]{[aa]^2}/[2af] and [hB]/[c^2], and [G]{[PM]^2}, [PM]{[PL]^3}{[Pf]^2}, and {[PQ]^2}/[k] must all be as identical to [hB][c] as are {[Q0]^2}[Ke]/[aa] and [Me][v0^2][a0]/[aa]. While the need for some more consistent set of Planck units thus becomes obvious, determination of the one correct set, and therefore of the value of the gravitational constant as the factor combination {[PL]^3}{[Pf]^2}/[PM], that arises from a very near miss in a value table as [G] is adjusted to reflect contemporary estimates. ** For Txx.xxxxxxx = 10^xx.xxxxxxx... , current publication(322) has [G] located in the middle of modern experimental results(023b)(322) at T-10.1743792 = 6.693e-11 in {Meter^3)/[(Kilogram)(Second^2)], or (Newton)(Meter^2)/(Kilogram^2), or (Farad)(Meter)(Volt^2)/(Kilogram^2), or (Meter)/[(Farad)(Second^2)(Tesla^2)], or (Farad)(Meter)(Ohm)(Watt)/(Kilogram^2), or (Meter)(Weber^2)/[(Henry)(Kilogram^2)], or (Coulomb^2)(Meter)/[(Farad)(Kilogram^2)], or (Meter^3)(Ohm)/[(Henry)(Kilogram)(Second)], or (Ampere^2)(Weber^2)/[(Kilogram^2)(Newton)], or (Coulomb)(Meter^3)(Tesla)/[(Kilogram^2)(Second)]. In (Henry)/(Meter) or (Newton)/(Ampere^2), quantity [d]{[aa]^2} and those which are identical to it all have a numerical value of 6.6917625...e-11 as T-10.1744595 , quite close to T-10.1743792 and even more centered in that result range. In fact, that near miss not only stands out in the values table, it is also true that if [G] and immutable product [d]{[aa]^2} both have that numerical value of T-10.1744595 , so that [PM] is T-7.6628219 , [PL] is T-34.7909227 , and [Pf] is T+43.2677434 , a number of dimensioned and dimensionless quantities acquire identical numerical values. While a uniform map such as those above will locate numerical values in parallel planes, the revised Planck unit maps now exhibit important new alignments. There are now numerous instances where significant quantities with dissimilar units share a line parallel to that which transfixes both [G] and [d] : a line of multiplication by some power of the factor [G]/[d] = [c^2][PL]/([PM][d]) = [c^4][k][PL]/[PM][d], which equals {[aa]^2}(Coulomb^2){Meter^2)/[(Kilogram^2)(Second^2)], or [PC][PL]/[PM] which is [aa](Coulomb){Meter)/[(Kilogram)(Second)] . In the comparison table, values in the first column are based on [G] as T-10.1744595 , and those in the second column derive from the currently published NIST values(023f). The "dissimilar" quantities which share a given numerical value are denoted by differing numbers of dollar signs and those with units will lie on one of the lines of coincidence mentioned above. Notice that the NIST adopted values of the Planck units produce results which fail to match those values required by the dimensional analysis, that different combinations of those NIST values as factors can produce differing numerical results for the same end product, and that some of the identical numerical occurrences which exist only for the proposed values of [PL], [PM], [Pf], and [G] have significant implications: {[aa]^2} as compared to [G][k][c^2] = [G]/[d] and therefore also [PL]/[PM] contrasted with {[aa]^2}/{[k][c^4]} = {[aa]^2}[d]/[c^2], [PM] in contrast to [PQ][c]/[aa] or [Pf] to [PQ][c^3]/{[aa][hB]}, [PL] contrasted with [Me]{[aa]^3}/[PQ][2af] = [PQ][aa][d]/[c], [PC] in contrast to [c^2]/{[d][aa]} and to [PM][aa]/[PL], [G]/[k] as compared to {[E0]/[H0]}^2 = {[v0][d]}^2 = {[z0][aa]}^2 = {([He][a0][d])/[hB]}^2 = {[aa]^2}[d]/[k] = 4{[aa]^4}{[RK]}^2 , and [Fe]/[Fg] = ([Q0]^2)[Ke]/([G][Me][Mp]) = [aa]{[PM]^2}/{[Me][Mp]} = {[PQ]^2}[aa][PM][d]/{[Me][Mp][PL]} = ([aa]^2)[PM][a0]/([Mp][PL]) = {[PQ]^2}[aa]/{[G][k][Me][Mp]} = ([aa]^3)[PM][Pf]/([Mp][2af]) in contrast to [c^4][a0][k]/[Mp] or to [PC][a0][aa]/[Mp] . While it is interesting to compare the alignment factor above to his magnetic charge and tempting to declare an insufficiency of bases in the S.I. similar to that proposed by Desloge(102)(103), this report intentionally declares only "inadequacy". The issue of measurements not only includes notable argument for fewer base units instead of more(030)(056)(235), it possesses all the potential for misunderstanding and confusion to be inferred from centuries of controversy and such contentions as distinguishing straight length from arc length(076), having separate units for lengths in different frames of reference(169), and proposals that length differs in the direction of an electron's travel(100) or can change when measured from a different scale(087). More physical dimensions in the microcosm(029)(055), gravity screening investigations(059), Foucault pendulum anomalies during solar eclipses(323), spacecraft trajectory abnormalities(316), even claims of antigravity experiments(324) are due consideration as an understanding of gravity remains elusive. With visible proof that the Planck units can be related to the other constants well enough to correct incompatibilities with them, because the adjusted set combines as factors to produce a numerical value shared by [G] and quantities with factors which are significant in defining any system of units(027)(123)(245)(261)(262), and considering the pattern alignments by such significant numerical coincidences, the proposal here is that reconsideration is called for of the mathematical logic found at the foundation of all of physics. To that end, this writer is pursuing and joins others in recommending a general review of the works by authors such as Birge(223)(262)(263), Bridgman(067)(251), DeBoer(147), Esnault-Pelterie(235), Hall(082), Karapetoff(232), Maxwell(090), Page(261), Palacios(124), Petley(077), Sena(245), Silsbee(066), Tuninsky(148), Varner(123), and Weber(233), as well as the comments on the subject by Abraham(056) and Jackson(136) and the more officially sanctioned publications(023)(288)(313). ** The CODATA 2006 adjustment of the fundamental constants specifically states that both the Fixler et al results and the Bernoldi et al results play no significant part in the officially adopted value for Newtonian gravitational constant [G], (Rev Mod Phys, Vol 80, No 2, Apr-Jun 2008, table XXVII and fig 2), but dimensional analysis still requires a set of Planck mass, Planck length, and Planck time values that correctly combine into all the quantities and there still exists a repeating, all-pervasive pattern of numerical coincidences among fundamental constants if [G] has the same numerical value as the product of the magnetic constant and the square of the fine structure constant. COMPARISON TABLE Mappings Complete values table Symbol key =================================++================================= $ = DIFFERENT DIMENSIONS, $$ = STILL DIFFERENT DIMENSIONS, etc. * as divider: value will vary with adjustment of value of [G] | as divider: value will NOT vary with adjustment of value of [G] WITH EACH VALUE AS A POWER OF TEN: G=T-10.1744595 NIST Jul2010 =================================++================================= [G] -10.1744595 * -10.1755956 {[PL]^3}{[Pf]^2}/[PM] -10.1744594 * -10.1755968 {[PL]^2}[Pf][c]/[PM] -10.1744594 * -10.1755965 [c^2][PL]/[PM] -10.1744594 * -10.1755962 [c^2]{[PL]^2}/{[a0][Me][aa]} -10.1744593 * -10.1755958 ([Q0]^2)/([4Pi][aa][k]([PM]^2)) -10.1744593 * -10.1755966 {[PQ]^2}/([k]{[PM]^2}) -10.1744595 * -10.1755962 {([2af][Me]/[B0][PM])^2}/{[4Pi][aa][k]} -10.1744595 * -10.1755966 in k2rmM2trNwtn = kgrmM3trs2nd = Cuulk2rmM3trscndTsla = fradMetrs2ndt2la = hnryk2rmMetrW2br = Fradk2rmMetrOhmmWaat = A2prk2rmnwtnW2br = Fradk2rmMetrV2tt = hnrykgrmM3trOhmmscnd $ [d]{[aa]^2} = [k]{[v0][d]}^2 -10.1744595 | -10.1744595 $ [k]{[He][a0][d]/[hB]}^2 -10.1744595 | -10.1744595 $ 4[k]{[aa]^4}{[RK]}^2 -10.1744597 | -10.1744595 $ [k]{[z0]^2}{[aa]}^2 = [k]{[E0]/[H0]}^2 -10.1744595 | -10.1744595 $ {4([aa]^2)}/({[Jf]^2}[c^2][Me][a0][Pi]) -10.1744595 | -10.1744595 $ [d]{[E0]^2}/{[c^2][B0]^2} -10.1744595 | -10.1744595 $ {[Q0]^2}{[d]^2}/{[4Pi][Me][a0]} -10.1744593 | -10.1744595 in Hnrymetr = a2prNwtn = FradmetrO2mm = FradmetrH2rys2nd $$ ({[aa]^2}[PL]/[k][PM])^.5 -10.1744595 * -10.1750278 $$ [aa][PQ]/{[c][k][PM]} -10.1744595 * -10.1750280 in f12dk12mMetr = kgrmWebr = CuulfradkgrmScnd [PM] - 7.6628219 * - 7.6622533 {[hB][c]/[G]}^.5 - 7.6628219 * - 7.6622538 {[aa]^2}[Me][Pf]/[2af] - 7.6628219 * - 7.6622540 [Me][a0][aa]/[PL] - 7.6628220 * - 7.6622537 {[PQ]^2}[z0]/{[c][PL]} - 7.6628220 * - 7.6622537 ([Q0]^2)[d]/{[4Pi][aa][PL]} - 7.6628218 * - 7.6622537 in Kgrm = C2ulm2trOhmmScnd = CuulScndTsla = C2ulfradm2trS2nd = C2ulHnrym2tr = A2prm2trOhmmScnd = Fradm2trW2br = FradM2trT2la $ [PQ][c]/[aa] - 7.6628219 | - 7.6628217 $ [PC][PL]/[aa] - 7.6628218 | - 7.6628218 in CuulMetrscnd = AmprMetr $$ [c^4][PL][k]/{[aa]^2} - 7.6628218 * - 7.6633900 in FradM4trs4nd [PL] -34.7909227 * -34.7914909 {[hB][G]/[c^3]}^.5 -34.7909228 * -34.7914908 [hB]/{[PM][c]} = [a0]([Me][aa]/[PM]) -34.7909227 * -34.7914913 [G][PM]/[c^2] -34.7909228 * -34.7914903 1/{[z0][Pf][k]} -34.7909227 * -34.7914906 in Metr = fradMetrScndohmm $ [Me]{[aa]^3}/[PQ][2af] = [PQ][aa][d]/[c] -34.7909228 | -34.7909228 $ [PM][aa]/[PC] -34.7909228 | -34.7909224 $ [PM][aa]/{[PQ][Pf]} -34.7909227 | -34.7909221 in amprKgrm = cuulKgrmScnd $$ [c^2][PQ]/{[PM][Pf][aa]} -34.7909227 * -34.7920592 in CuulkgrmM2trscnd $$$ [PM][d]{[aa]^2}/[c^2] -34.7909228 * -34.7903542 in HnryKgrmm3trS2nd [Pf] +43.2677434 * +43.2683113 {[hB][G]/[c^5]}^-.5 +43.2677435 * +43.2683115 [2af][Pp]/([p0][aa]) +43.2677434 * +43.2683117 [2af][a0]/([PL][aa]) +43.2677434 * +43.2683116 [2af][PM]/([Me]{[aa]^2}) +43.2677435 * +43.2683120 [2af][PE]/[He] +43.2677434 * +43.2683120 in Hrtz $ [PC][c]/{[aa][PM]} +43.2677435 | +43.2677431 $ [PQ][c^3]/{[aa][hB]} +43.2677434 | +43.2677435 in AmprkgrmMetrscnd = CuulM3trjuuls4nd $$ [PM][aa]/{[PQ][PL]} +43.2677434 * +43.2688802 $$ [PQ][d][aa]/{[PL]^2} +43.2677433 * +43.2688798 in cuulKgrmmetr = CuulHnrym3tr {[E0]/[H0]}^2 = {[v0][d]}^2 = {[z0][aa]}^2 + 0.8783918 | + 0.8783918 {([He][a0][d])/[hB]}^2 = {[aa]^2}[d]/[k] + 0.8783918 | + 0.8783918 4{[aa]^4}{[RK]}^2 + 0.8783916 | + 0.8783918 in O2mm = H2rys2nd = fradHnry = a2prC2ulf2ad $ [G]/[k] + 0.8783918 * + 0.8772557 $ [hB][c]/([k]{[PM]^2}) + 0.8783919 * + 0.8772547 $ {[PL]^3}{[Pf]^2}/{[PM][k]} + 0.8783919 * + 0.8772545 in C2ulf2adk2rmM2tr = fradk2rmM3trNwtn = fradkgrmM4trs2nd $$ {[c][G]/[aa]}^2 + 0.8783918 * + 0.8761196 in k2rmM8trs6nd [G][c^2][k] = [G]/[d] - 4.2736694 * - 4.2748054 [c^4][PL][k]/[PM] - 4.2736694 * - 4.2748061 {[PC]^2}{[PL]^2}/{[PM]^2} - 4.2736692 * - 4.2748064 in Fradk2rmM3trNwtns2nd = hnrykgrmM4trs2nd = A2prk2rmM2tr $ {[aa]^2} - 4.2736694 | - 4.2736693 is dimensionless $$ [d][PC]{[aa]^3}/[c^2] - 4.2736694 * - 4.2731011 in amprm2trNwtnS2nd = AmprHnrym3trS2nd [d] = 1/([c^2][k]) = {[z0]^2}[k] - 5.9007901 | - 5.9007901 in a2prNwtn = Hnrymetr $ [PQ]/([k][c][PM][aa]) - 5.9007901 * - 5.9013587 in CuulfradkgrmScnd $$ [G]/{[aa]^2} - 5.9007902 * - 5.9019262 in kgrmM3trs2nd [c] = [v0]/[aa] = [E0]/{[aa][d][H0]} + 8.4768207 | + 8.4768207 [aa][H0]/{[k][E0]} = [z0]/[d] + 8.4768207 | + 8.4768207 [PL][Pf] + 8.4768207 | + 8.4768204 [hB]/{[PL][PM]} + 8.4768207 | + 8.4768203 in Metrscnd = metrtslaVltt = AmprfradMetrvltt = hnryMetrOhmm $ [PM][aa]/[PQ] + 8.4768207 * + 8.4773893 in cuulKgrm $$ [PM]{[aa]^2}/({[PL]^4}{[Pf^3}[k]) + 8.4768206 * + 8.4779583 $$ {[aa]^2}/{[G][c][k]} + 8.4768207 * + 8.4779568 in fradKgrmm3trS3nd [Me][c^2] -13.0868697 | -13.0868697 ([Q0]^2)[Ke]/({[aa]^2}[a0]) -13.0868695 | -13.0868697 [Fe][a0]/{[aa]^2} = [He]/{[aa]^2} -13.0868696 | -13.0868697 {[E0]^2}{[a0]^3][4Pi][k]/{[aa]^2} -13.0868697 | -13.0868697 {[B0]^2}{[a0]^3}[4Pi]/[d] -13.0868697 | -13.0868697 {[H0]^2}{[a0]^3][4Pi][d] -13.0868697 | -13.0868697 [hB][c]/{[a0][aa]} -13.0868696 | -13.0868697 {[PQ]^2}/{[a0][aa][k]} -13.0868697 | -13.0868697 [PE][PL]/([a0][aa]) -13.0868696 | -13.0868693 {[PM]^2}[G]/{[aa][a0]} -13.0868697 | -13.0868686 [FBH]([PL]^2)/([aa][a0]) -13.0868696 | -13.0868697 [PM]{[PL]^3}{[Pf]^2}/([aa][a0]) -13.0868696 | -13.0868699 in Juul = C2ulfrad = NwtnMetr = FradV2tt = hnryM4trT2la $ {[PM]^1.5]{[PL]^.5}/([a0]{[k]^.5}) -13.0868697 * -13.0863009 in f12dK15mm12r = KgrmmetrScndVltt = KgrmMetrTsla $$ {[PM]^2}[aa]/({[Pf]^2}{[PL]^2}[a0][k]) -13.0868697 * -13.0857320 in fradK2rmm2trS2nd [PL]/{[PM][d]} -21.2273107 * -21.2284475 [G][k] = [G][Me][a0]({[Jf][Pi]}^2)/[4Pi] -21.2273108 * -21.2284468 {[PQ]^2}/{[PM]^2} -21.2273108 * -21.2284479 in hnrykgrmM2tr = FradkgrmM2trs2nd = M4trs4ndv2tt = C2ulk2rm $ {[aa]^2}/[c^2] = {[aa]^2}[d][k] -21.2273108 | -21.2273108 in m2trS2nd = FradHnrym2tr $$ [aa]({[k][PL]}^.5)/{[PM]^.5} -21.2273108 * -21.2278791 in F12dk12m = CuulkgrmmetrScnd [c^2]/{[d][aa]} +24.9912662 | +24.9912662 in hnryM3trs2nd = A2prkgrmMetr $ [PC] = {[k]([PL]^3)[PM]([Pf]^4)}^.5 +24.9912662 * +24.9918344 $ {1/[PL]}{[hB][c]/[d]}^.5 +24.9912662 * +24.9918344 $ [PQ][Pf] +24.9912661 * +24.9918341 $ [PM][Pf]{[G][k]}^.5 +24.9912661 * +24.9918346 $ ([G]{[PM]^2}/([d]{[PL]^2}))^.5 +24.9912661 * +24.9918349 in Ampr = Cuulscnd = F12dK12mMetrs2nd = h12yK12mMetrscnd $$ [PM][aa]/[PL] +24.9912661 * +24.9924030 $$ [c^2][aa]/[G] +24.9912661 * +24.9924023 in Kgrmmetr [G]([PM]^2) -25.5001033 | -25.5001022 [PM][PL][c^2] -25.5001032 | -25.5001028 {[PL]^3}{[Pf]^2}[PM] -25.5001032 | -25.5001034 {[PL]^2}{[PC]^2}[d] -25.5001031 | -25.5001031 {[PQ]^2}/[k] -25.5001033 | -25.5001032 ([Q0]^2)/{[4Pi][k][aa]} -25.5001031 | -25.5001032 [hB][c] -25.5001032 | -25.5001032 in KgrmM3trs2nd = C2ulfradMetr = A2prhnryMetr = JuulMetr $ [PQ][d][c][aa][PM] -25.5001033 * -25.4995346 in CuulHnryKgrmscnd $$ [PC]{[PL]^2}[c^2]/[aa] -25.5001031 * -25.5006713 in AmprM4trs2nd [G]/[c^2] = [G][d][k] -27.1281009 * -27.1292370 [c^2]/[FBH] -27.1281008 * -27.1292372 [PL]/[PM] -27.1281008 * -27.1292376 [Me][a0][aa]/{[PM^2]} -27.1281009 * -27.1292380 {[Q0]^2}[d]/([4Pi]{[PM]^2}[aa]) -27.1281008 * -27.1292380 in kgrmMetr = k2rmmetrNwtnS2nd = C2ulHnryk2rmmetr $ [aa]/[PC] -27.1281009 * -27.1286691 $ [PQ][d][aa]/{[PM][c]} -27.1281009 * -27.1286695 in ampr = CuulHnrykgrmm2trScnd $$ [k]{[d]^2}{[aa]^2} = [d]{[aa]/[c]}^2 -27.1281008 | -27.1281009 in FradH2rym3tr = Hnrym3trS2nd [PM][Pf] +35.6049215 * +35.6060580 [c^3]/[G] +35.6049216 * +35.6060577 [hB]/{[PL]^2} +35.6049215 * +35.6060579 [FBH][d]/[z0] +35.6049215 * +35.6060579 in Kgrmscnd = K2rmMetrnwtns3nd = Juulm2trScnd = HnrymetrNwtnohmm $ [PC][c]/[aa] +35.6049216 * +35.6054898 in AmprMetrscnd $$ [aa]{[PM]^1.5}{[d]^.5}/{[PL]^1.5}) +35.6049215 * +35.6066267 in KgrmmetrScndTsla {[PQ]^2} -36.5529546 | -36.5529545 [k][c^2][PL][PM] -36.5529545 | -36.5529541 [k][PM]{[PL]^3}{[Pf]^2} -36.5529545 | -36.5529547 [[Q0]^2}/{[4Pi][aa]} -36.5529544 | -36.5529545 [Me][a0][aa]/[d] -36.5529546 | -36.5529545 [hB][c][k] -36.5529545 | -36.5529545 [PL][PM]/[d] -36.5529545 | -36.5529541 [G][k]{[PM]^2} -36.5529546 | -36.5529534 in C2ul = FradJuul = hnryKgrmM2tr $ [PQ][PM][aa]/[c] -36.5529546 * -36.5523859 in CuulKgrmmetrScnd $$ ([PM]^2}{[aa]^2}/[c^2] -36.5529546 * -36.5518174 in K2rmm2trS2nd [Fe]/[Fg] = ([Q0]^2)[Ke]/([G][Me][Mp]) +39.3546349 * +39.3557711 {[PQ]^2}[aa]/{[G][k][Me][Mp]} +39.3546349 * +39.3557711 {[PQ]^2}[aa][PM][d]/{[Me][Mp][PL]} +39.3546348 * +39.3557717 [aa]{[PM]^2}/{[Me][Mp]} +39.3546349 * +39.3557721 ([aa]^2)[PM][a0]/([Mp][PL]) +39.3546349 * +39.3557717 ([aa]^3)[PM][Pf]/([Mp][2af]) +39.3546348 * +39.3557714 is dimensionless $ [PC][a0][aa]/[Mp] +39.3546349 * +39.3552032 in AmprkgrmMetr $$ [c^4][a0][k]/[Mp] +39.3546349 | +39.3546350 $$ {[PC]^2}{[PL]^2}/{[aa][Me][Mp]} +39.3546351 | +39.3546351 $$ {[PQ]^2}[c^2]/{[aa][Me][Mp]} +39.3546349 | +39.3546350 in FradkgrmM4trs4nd = A2prk2rmM2tr = C2ulk2rmM2trs2nd [PM][PL] = {[PQ]^2}[d] -42.4537446 | -42.4537442 [hB]/[c] = [Me][Re]/[aa] = [Me][a0][aa] -42.4537446 | -42.4537446 [aa][4Pi][k]{[B0]^2}{[a0]^4} -42.4537446 | -42.4537446 [aa][Ke]{[Me^2}/({[B0]^2}{[a0]^2}) -42.4537447 | -42.4537446 ([Q0]^2)[d]/([aa][4Pi]) -42.4537445 | -42.4537446 [Jf][aa]{[Me]^2}/{4[k][B0]} -42.4537447 | -42.4537446 4[k][aa]{[w0]^2}/[Pi] = 2[hB][RK][k][aa] -42.4537447 | -42.4537446 in KgrmMetr = C2ulHnrymetr = FradM3trT2la = FradJuulmetrOhmmScnd $ {[PL]^2}[PC]/[aa] -42.4537445 * -42.4543127 $ [c][PL][PQ]/[aa] -42.4537446 * -42.4543128 in AmprM2tr $$ [c^4]{[PL]^2}[k]/{[aa]^2} -42.4537445 * -42.4548810 in FradM5tr [G][Me]/([a0]{[v0]^2}) -42.6185437 * -42.6196798 [G]{[B0]^2}[4Pi][k]/{[2af]^2} -42.6185437 * -42.6196798 ([Me][Fg])/([Fe][Mp]) = [Fge]/[Fe] -42.6185437 * -42.6196798 ([Me]^2)[G][4Pi][k]/([Q0]^2) -42.6185439 * -42.6196798 {[Me]^2}/([aa]{[PM]^2}) -42.6185437 * -42.6196809 [Me][c^2]/({[aa]^2}[FBH][a0]) -42.6185436 * -42.6196801 [Me][PL]/([a0][PM]([aa]^2)) -42.6185436 * -42.6196805 [Me][2af]/([PM][Pf]{[aa]^3}) -42.6185436 * -42.6196802 ([PL]^2)/{([a0]^2)([aa]^3)} -42.6185435 * -42.6196801 4[PL][B0][k]/({[aa]^2}[PM][Jf]) -42.6185436 * -42.6196805 [Pf]{[PL]^3}/({[aa]^2}{[a0]^3}[2af]) -42.6185435 * -42.6196804 [FBH] = [hB][c]/{[PL]^2} +44.0817422 * +44.0828786 [G]{[PM]^2}/{[PL]^2} +44.0817421 * +44.0828797 [PM][PL]{[Pf]^2} +44.0817422 * +44.0828784 [PM][C^2]/[PL] +44.0817422 * +44.0828790 [c][PM][Pf] +44.0817422 * +44.0828787 [c^4]/[G] +44.0817423 * +44.0828784 {[PC^2]}[d] +44.0817423 * +44.0828787 {[PQ]^2}/([k]{[PL]^2}) +44.0817421 * +44.0828786 in Nwtn = KgrmMetrs2nd = A2prHnrymetr = C2ulfradmetr $ {[PM]^1.5}[aa]/({[k]^.5}{[PL]^1.5}) +44.0817422 * +44.0834474 in f12dK32mmetr = KgrmTsla $$ [PC][c^2]/[aa] +44.0817423 * +44.0823105 in AmprM2trs2nd [A0]/[PA] = [4Pi]([a0]^2)/{[4Pi]([PL]^2)} +49.0290476 * +49.0301841 [PM][Pf]/{[Me][2af]} +49.0290477 * +49.0301842 [a0][Pf][aa]/([PL][2af]) +49.0290476 * +49.0301838 [PE][PM]/{[He][Me]} +49.0290477 * +49.0301849 {[Pp]^2}/{[p0]^2} +49.0290476 * +49.0301843 [PM]/[Pf] -50.9305653 | -50.9305646 [hB]/[c^2] = [Me]{[aa]^2}/[2af] -50.9305653 | -50.9305653 in KgrmScnd = Juulm2trS3nd $ [PL][PQ]/[aa] -50.9305653 * -50.9311335 in CuulMetr $$ [c^3]{[PL]^2}[k]/{[aa]^2} -50.9305652 * -50.9317017 in FradM4trs3nd =================================++=================================